Using Chessboards to investigate an Unsolved Conjecture in Graphs So you want to learn about graphs?

Hanzhang Yin

University of Connecticut

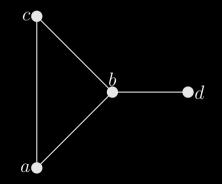
July 15th, 2022

Graph

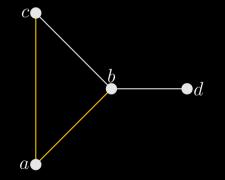
 $G = \{V(G), E(G)\}$

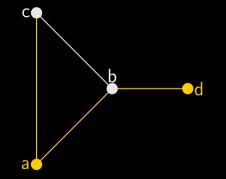
Graph

 $G = \{V(G), E(G)\}$



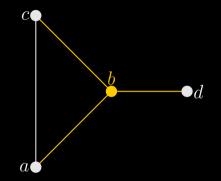
Adjacency

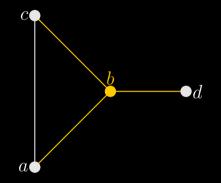




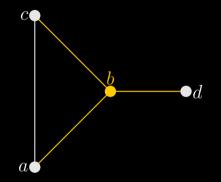
 $\{a,d\}$ is a dominating set.

$\gamma(G)$: the number of vertices in a smallest dominating set of graph G.





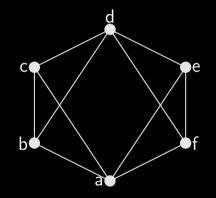
 $\{b\}$ is a dominating set.

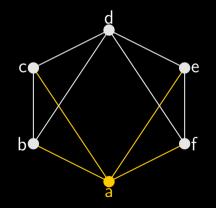


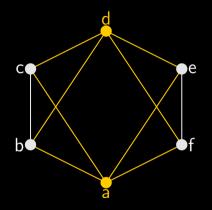
 $\{b\}$ is a dominating set. $\gamma(G) = \underline{1}.$

6 / 89

$\gamma_k(G)$: the number of vertices in a smallest k-dominating set of graph G.

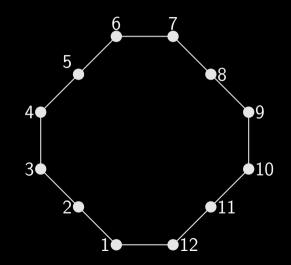


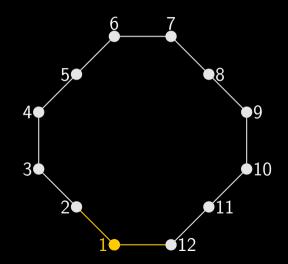


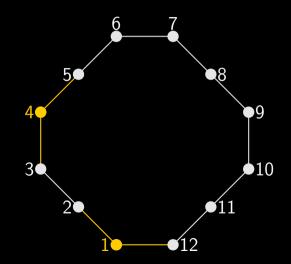


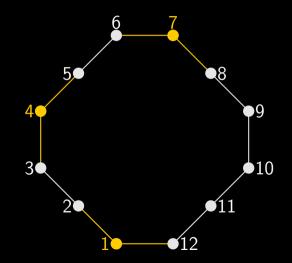
 $\{a,d\}$ is a 2-dominating set.

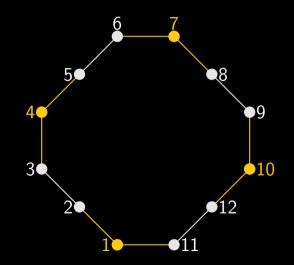
 $\overline{\gamma_2(G)} = 2.$

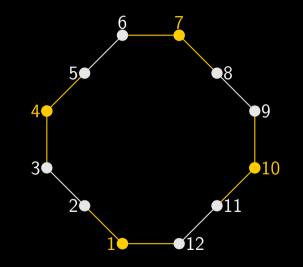






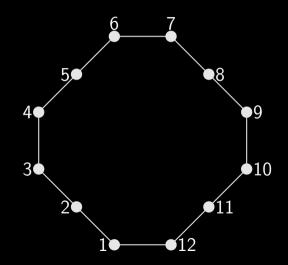


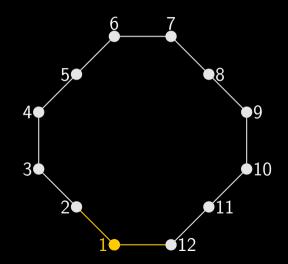


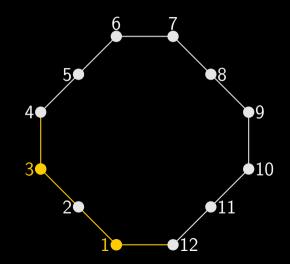


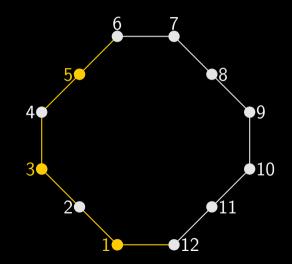
 $\{1,4,7,10\}$ is a 1-dominating set and $\gamma(G)=4$

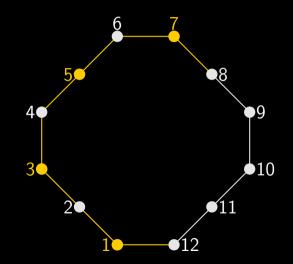
16 / 89

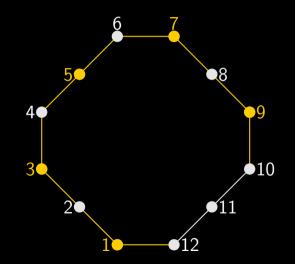


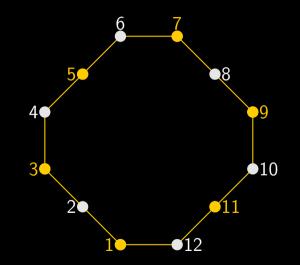




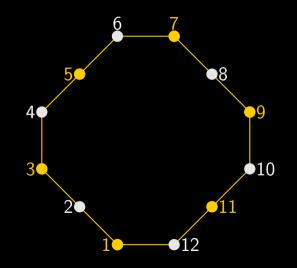




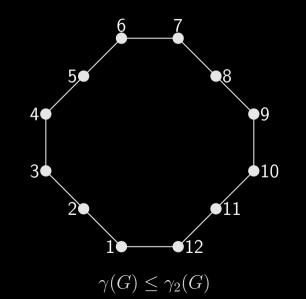




 $\{1,3,5,7,9,11\}$ is a 2-dominating set and $\gamma_2(G) = 6$.



 $\{1,3,5,7,9,11\}$ is a 1-dominating set.



For any graph G,

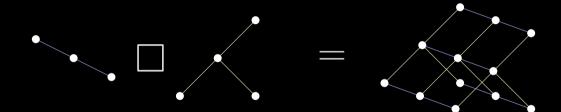
$\gamma_k(G) \le \gamma_{k+1}(G).$

Cartesian Product of Graphs

Cartesian Product of Graphs

$\overline{G\Box H} = \{V(G\Box H), E(\overline{G\Box H})\}$

Cartesian Product of two graphs

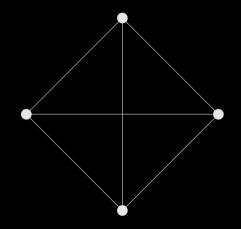


Complete Graph

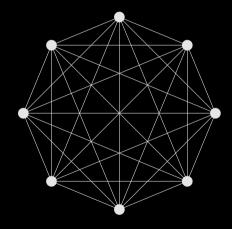
Complete Graph

 K_n

K_4



K_8

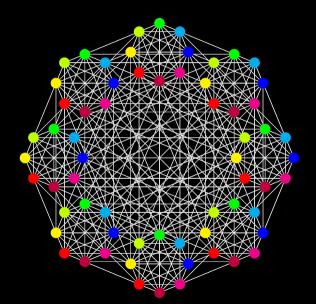


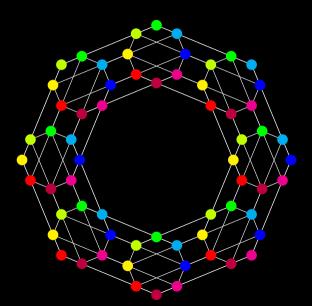
Cartesian Product of Complete Graphs

k-Domination of Cartesian Product of Complete Graphs

 $\gamma_k(K_n \Box K_m)$

$K_8 \Box K_8$





Cartesian Product of Graphs

If G and H are connected graphs with n and m vertices respectively,

$$\gamma_k(K_n \Box K_m) \le \gamma_k(G \Box H)$$

The Vizing Conjecture

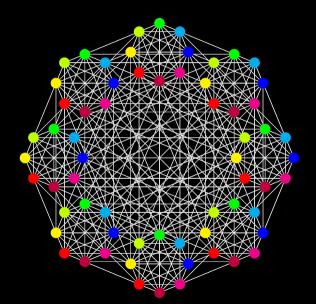
$\gamma(G)\gamma(H) \le \gamma(G\Box H)$

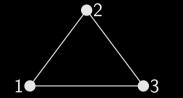
Cartesian Product of Graphs

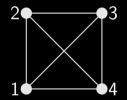
If G and H are connected graphs with n and m vertices respectively,

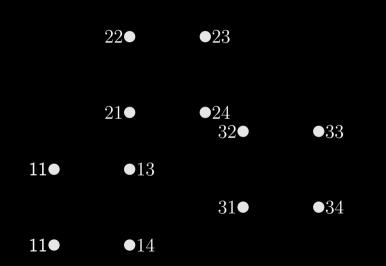
$$\gamma(K_n \Box K_m) \le \gamma(G \Box H)$$

$K_8 \Box K_8$

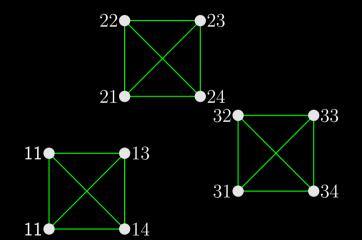




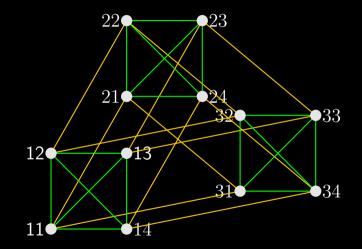


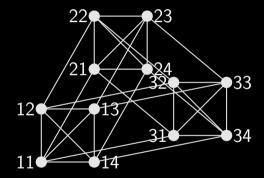


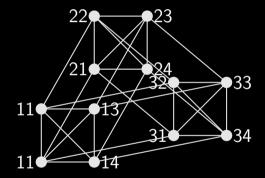
$\overline{K}_3 \Box \overline{K}_4$



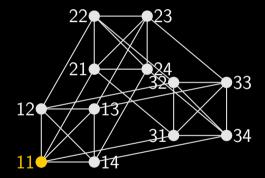
$K_3 \Box K_4$



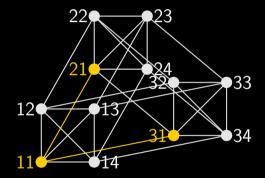




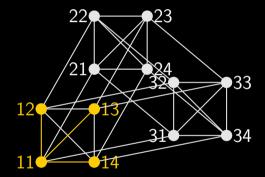
11	12	13	14
21	22	23	24
31	32	33	34



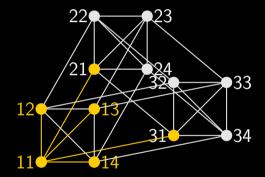
11	12	13	14
21	22	23	24
31	32	33	34



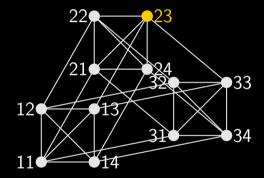
11	12	13	14
21	22	23	24
31	32	33	34



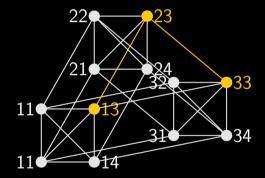
11	12	13	14
21	22	23	24
31	32	33	34



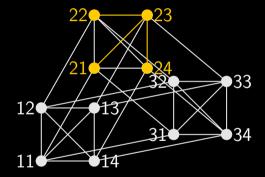
11	12	13	14
21	22	23	24
31	32	33	34



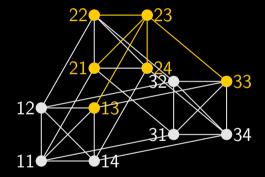
11	12	13	14
21	22	23	24
31	32	33	34



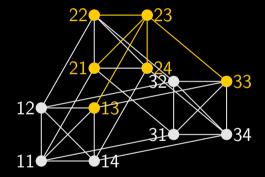
11	12	13	14
21	22	23	24
31	32	33	34



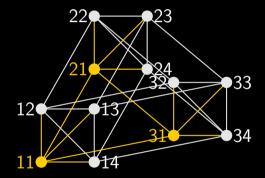
11	12	13	14
21	22	23	24
31	32	33	34



11	12	13	14
21	22	23	24
31	32	33	34

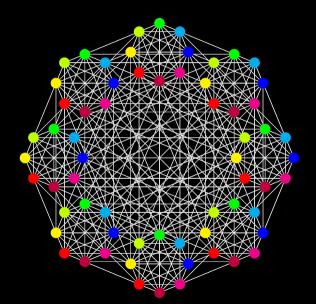


11	12	13	14
21	22		24
31	32	33	34



12	13	14
22	23	24
32	33	34

$K_8 \Box K_8$



) I				
(F)				

Chessboard: $K_8 \square K_8$

) I				
(F)				

 $\gamma(K_8 \Box K_8) = 8$

Using Chessboards to investigate an Unsolved Conjecture in Graphs Domination Station

Liam Busch

Rowan University

July 15th, 2022

	 	 	 >
	 	 	 >

	 	 	 	>
F	 	 	 	>
E	 	 	 	>
T	 	 	 	>
	 	 	 	>
E	 	 	 	>
	 	 	 	>
	 	 	 	>

 $\gamma(K_n \Box K_n) \le n$

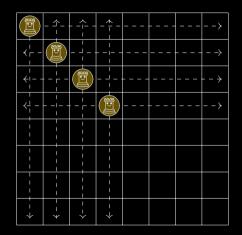
	 	 	 	>
- >				

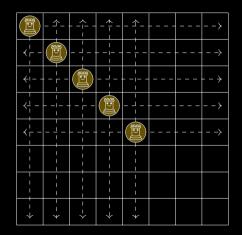
	 	 	 	>
	 	 	 	>
>				

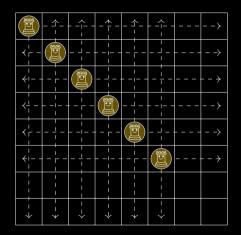
Ĩ	 	 	 	>
>				

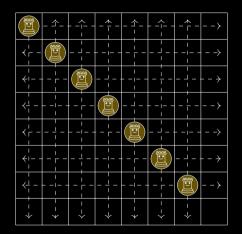
	_ ^ 	 	 	 >
	F	 	 	 $- \rightarrow$
- +	>			

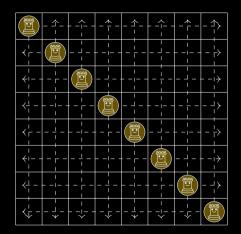
			 	 	>
, , , , , , , , , , , , , , , , , , , ,	F		 	 	$- \rightarrow$
 +		T	 	 	>
>	>	>			

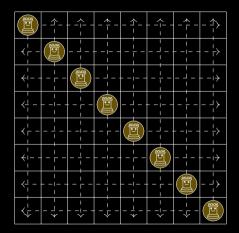












$$\gamma(K_n \Box K_n) = n$$

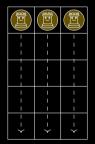
		-
>	>	>

	I	I
	1	1
	1	1
>	>	>

I	1	1
	1	I
i	1	i
1	1	1
1	1	1
1	1	1
1	1	1
1	1	1
\sim	\rightarrow	\sim

	 	 	 	 >
	 	 	 	 $- \rightarrow$
	 	 	 	 $- \rightarrow$
	 	 	 	 >
	 	 	 	 >

What happens if our board isn't a square?



	 	 	 	 $- \rightarrow$
	 	 	 	 >
	 	 	 	 >
	 	 	 	 >
	 	 	 	 >

 $\gamma(K_n \Box K_m) \le \min\{n, m\}$

Let $n \leq m$, without loss of generality.

Let $n \le m$, without loss of generality. \blacktriangleright Is $\gamma(K_n \Box K_m) = n$ true?

Let $n \leq m$, without loss of generality. Is $\gamma(K_n \Box K_m) = n$ true? $\gamma(K_n \Box K_n) \leq \gamma(K_n \Box K_m) \leq n$

Let
$$n \leq m$$
, without loss of generality
 \blacktriangleright Is $\gamma(K_n \Box K_m) = n$ true?
 $\flat \gamma(K_n \Box K_n) \leq \gamma(K_n \Box K_m) \leq n$
 $\gamma(K_n \Box K_m) = \min\{n, m\}$ is true!

Let $n \leq m$, without loss of generality. Is $\gamma(K_n \Box K_m) = n$ true? $\gamma(K_n \Box K_n) \leq \gamma(K_n \Box K_m) \leq n$ $\gamma(K_n \Box K_m) = \min\{n, m\}$ is true!

Let $n \le m$, without loss of generality. $Is \gamma(K_n \Box K_m) = n \text{ true?}$ $\gamma(K_n \Box K_n) \le \gamma(K_n \Box K_m) \le n$ $\gamma(K_n \Box K_m) = \min\{n, m\} \text{ is true!}$ Is true!

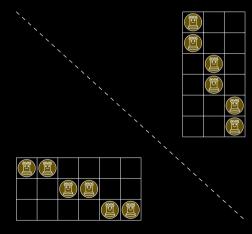
Let $n \leq m$, without loss of generality. Is $\gamma(K_n \Box K_m) = n$ true? $\gamma(K_n \Box K_n) \leq \gamma(K_n \Box K_m) \leq n$ $\gamma(K_n \Box K_m) = \min\{n, m\}$ is true! $\gamma(K_n \Box K_m) = \min\{n, m\}$ is true!

 $\gamma(K_n \Box K_m) = \gamma(K_m \Box K_n) = \gamma(K_n \Box K_n)$

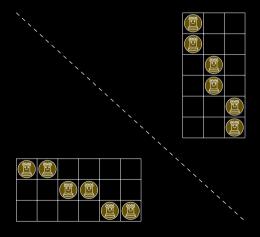
 $\overline{K_n \Box K_m}$ and $\overline{K_m \Box K_n}$ are isomorphic

 $K_n \Box K_m$ and $K_m \Box K_n$ are isomorphic $(i, j) \rightarrow (j, i).$

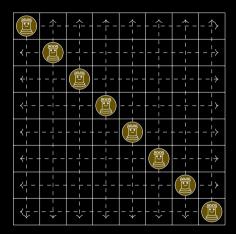
 $K_n \Box \overline{K}_m$ and $K_m \Box \overline{K}_n$ are isomorphic $(i, j) \rightarrow (j, i).$

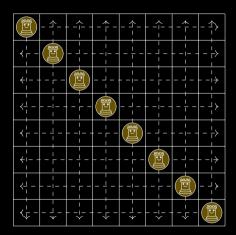


 $K_n \Box \overline{K}_m$ and $K_m \Box \overline{K}_n$ are isomorphic $(i,j) \rightarrow (j,i).$

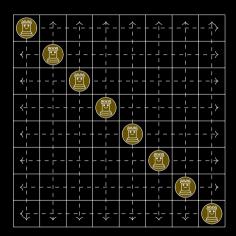


$$\gamma_k(K_n \Box K_m) = \gamma_k(K_m \Box K_n)$$

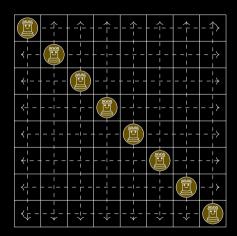




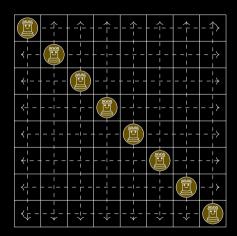
This configuration is 2-dominating!



This configuration is 2-dominating! Is $\gamma_2(K_n \Box K_n) = n$ true?



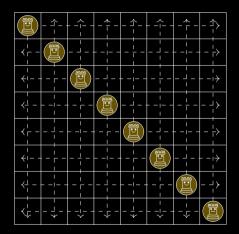
This configuration is 2-dominating! Is $\gamma_2(K_n \Box K_n) = n$ true? $\gamma(K_n \Box K_n) \le \gamma_2(K_n \Box K_n) \le n$



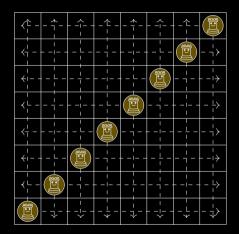
This configuration is 2-dominating! Is $\gamma_2(K_n \Box K_n) = n$ true? $\gamma(K_n \Box K_n) \le \gamma_2(K_n \Box K_n) \le n$

 $\gamma_2(K_n \Box K_n) = n$ is true!

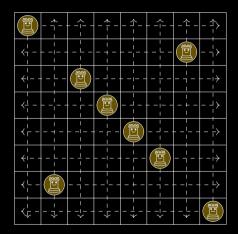
Row/Column Switching



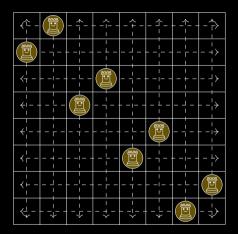
Row/Column Switching



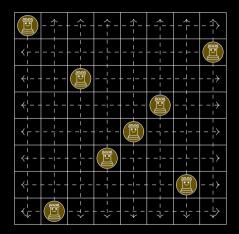
Row/Column Switching



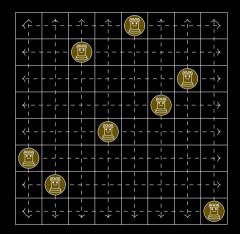
Row/Column Switching

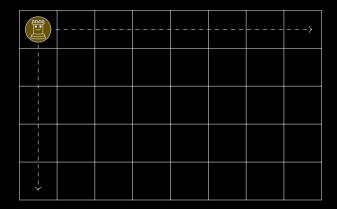


Row/Column Switching

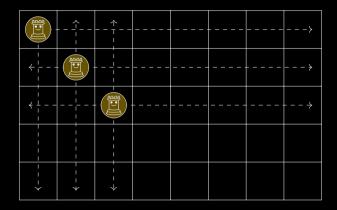


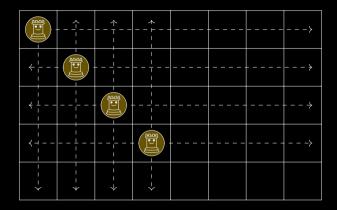
Row/Column Switching

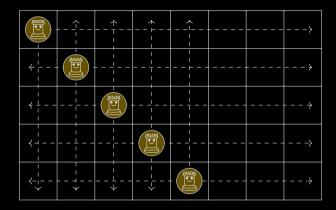


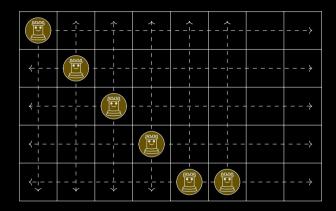


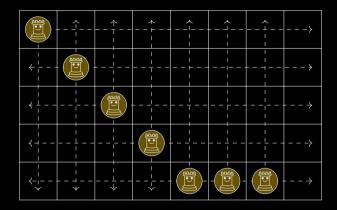


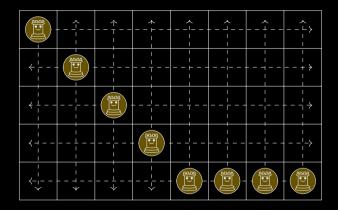




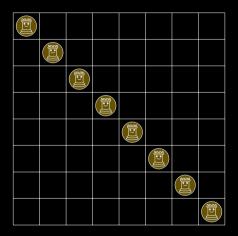


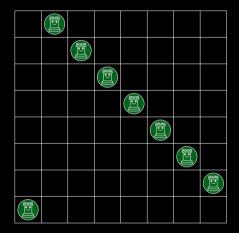






 $\gamma_2(K_n \Box K_m) \le \max\{n, m\}$





k-dominating

l-dominating

Their union is $(k + \ell)$ -dominating!

Using Chessboards to investigate an Unsolved Conjecture in Graphs Big Square Domination

Grant Silewski

University of Minnesota

July 15th, 2022

k-Domination of Rectangles

Large Rectangles (k = 2)

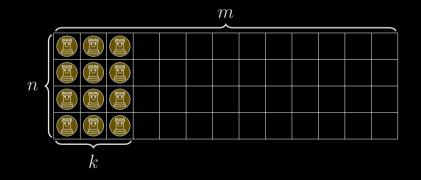
Large Rectangles (k = 2)

Large Rectangles (k = 2)

II II							
T)							

Squareness Argument

For what m is $\gamma_k(K_n \Box K_m) = nk$?



Squareness Argument

 $m \ge kn$. Assume for contradiction $\gamma_k(K_n \Box K_m) \le nk - 1$.

 $\Rightarrow \Leftarrow$

One before squareness Argument

If
$$n(k-1) \le m \le kn$$
, then $\gamma_k(K_n \Box K_m) = m$.

$$k = 4$$

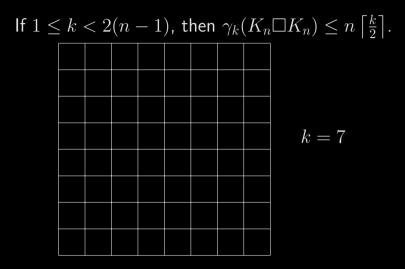
One before squareness Argument

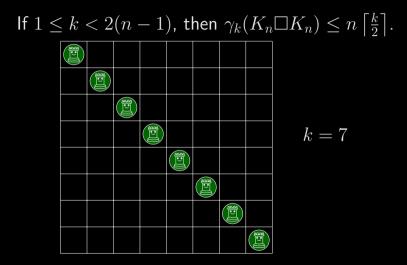
If $n(k-1) \leq m \leq kn$, then $\gamma_k(K_n \Box K_m) = m$.

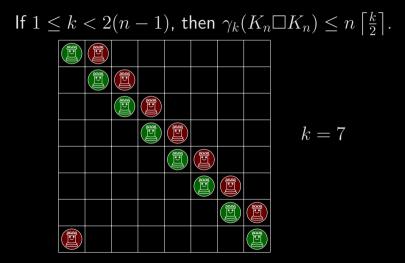
				T	E

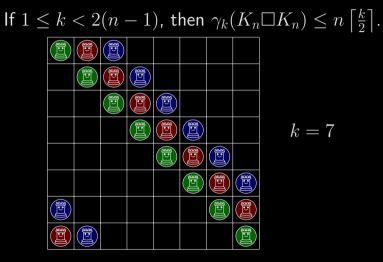
$$k = 4$$

k-Domination of Squares









If
$$1 \le k < 2(n-1)$$
, then $\gamma_k(K_n \Box K_n) \le n \left| \frac{k}{2} \right|$.

k = 7

Proposed Upper Bounds for Squares

For even k

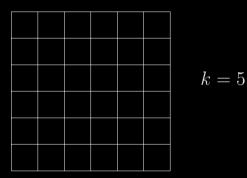
$$\gamma_k(K_n \Box K_n) \le \frac{nk}{2}.$$

For odd k

$$\gamma_k(K_n \Box K_n) \le \begin{cases} \frac{(n-1)(k-1)}{2} + n, & \text{for } k \le n \\ \frac{(n+1)(k-1)}{2} + 1, & \text{for } n \le k < 2(n-1). \end{cases}$$

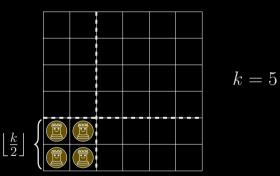
Proposed Upper Bound for Odd $k \leq n$

$$\gamma_k(K_n \Box K_n) \le \frac{(n-1)(k-1)}{2} + r$$



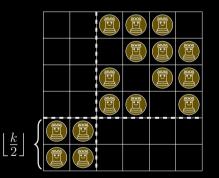
Proposed Upper Bound for Odd $k \le n$

$$\gamma_k(K_n \Box K_n) \le \frac{(n-1)(k-1)}{2} + r$$



Proposed Upper Bound for Odd $k \leq n$

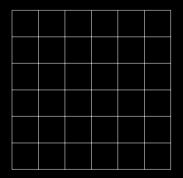
$$\gamma_k(K_n \Box K_n) \le \frac{(n-1)(k-1)}{2} + n$$



$$k = 5$$

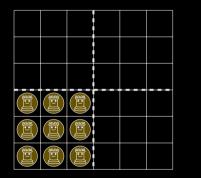
Proposed Upper Bound for Odd k

At some point, can't do a $\lfloor \frac{k}{2} \rfloor$ square.



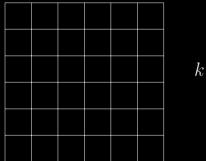
$$k = 7$$

At some point, can't do a $\lfloor \frac{k}{2} \rfloor$ square.



$$k = 7$$

$$\gamma_k(K_n \Box K_n) \le \frac{(n+1)(k-1)}{2} + 1$$

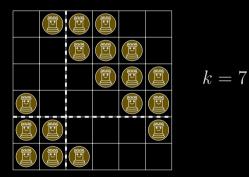


$$k = 7$$

$$\gamma_k(K_n \Box K_n) \le \frac{(n+1)(k-1)}{2} + 1$$

$$k = 7$$

$$\gamma_k(K_n \Box K_n) \le \frac{(n+1)(k-1)}{2} + 1$$



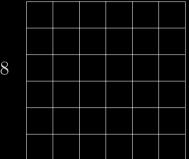
$$\gamma_k(K_n \Box K_n) \le \frac{(n+1)(k-1)}{2} + 1$$

$$k = 7$$

Minimum Rook Lemma for Squares

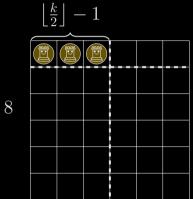
All rows or columns of an n by n square board contain at least $\lfloor \frac{k}{2} \rfloor$ rooks.

1. Start with a row containing at most $\left|\frac{k}{2}\right| - 1$ rooks.



$$k = \delta$$

1. Start with a row containing at most $\left|\frac{k}{2}\right| - 1$ rooks.



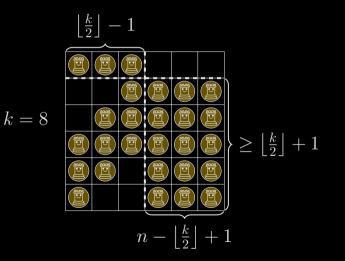
$$k = \delta$$

2. Make claims about the remaining rooks.



$$k = 8$$

2. Make claims about the remaining rooks.



Even k for Squares Closed Formula

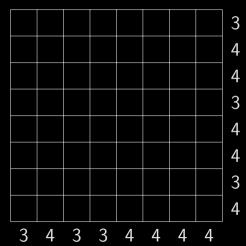
For $1 < k \leq 2(n-1)$ and k is even

$$\gamma_k(K_n \Box K_n) = \frac{nk}{2}.$$

For $1 \le k \le n$ and k is odd

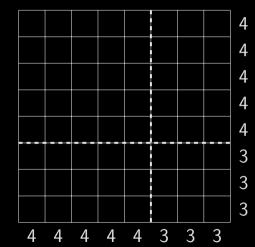
$$\gamma_k(K_n \Box K_n) = \frac{(n-1)(k-1)}{2} + n$$

Find maximum $\left|\frac{k}{2}\right|$ rows.

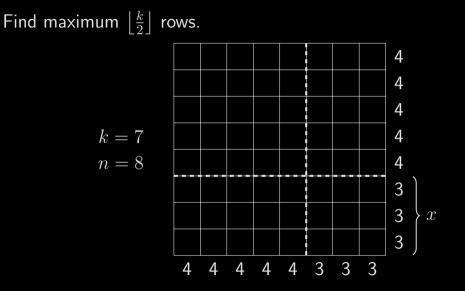


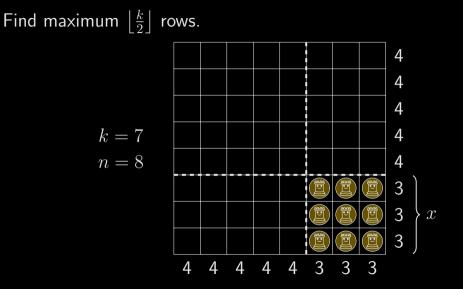
$$k = 7$$
$$n = 8$$

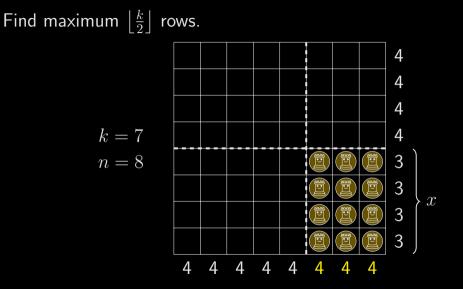
Find maximum $\left|\frac{k}{2}\right|$ rows.



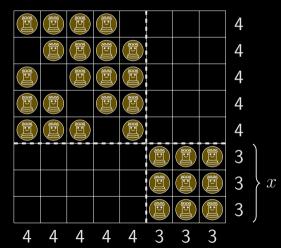
$$\kappa = i$$
$$n = 8$$







Find maximum $\lfloor \frac{k}{2} \rfloor$ rows.



$$\begin{aligned}
\kappa &= i \\
n &= 8
\end{aligned}$$

Find maximum $\left|\frac{k}{2}\right|$ rows. k = 7n = 8xΔ

Find maximum $\left|\frac{k}{2}\right|$ rows. k = 7n = 8xΛ

Odd k for Squares Closed Formula n < k

For k odd and $n < k \le 2(n-1)$

$$\gamma_k(K_n \Box K_n) = n \left\lceil \frac{k}{2} \right\rceil - \left\lfloor \frac{n}{2} \left(1 - \frac{1}{2n-k} \right) \right\rfloor$$

1&2-Domination of the Cartesian Product of Complete Graphs

1&2-Domination of the Cartesian Product of Complete Graphs Found the cutoff for Trivial Cases

1&2-Domination of the Cartesian Product of Complete Graphs Found the cutoff for Trivial Cases Minimum Rook Lemma for Squares

1&2-Domination of the Cartesian Product of Complete Graphs Found the cutoff for Trivial Cases Minimum Rook Lemma for Squares Closed formulas for all Squares of *k*-domination